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Direct dark matter detection

I Assuming elastic spin-independent scattering, strong tension
between DAMA signal and XENON100 bound:

XENON100 Collaboration, 1207.5988 CDMS Collaboration, 1304.4279

I These kind of plots assume the “Standard Halo Model”:
isothermal sphere with an isotropic Maxwell-Boltzmann velocity
distribution.
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Direct dark matter detection

I Inelastic scattering: DM particle χ scatters to an excited state χ∗

with mass difference δ = m∗χ −mχ ∼ O(100) keV

I In DAMA NaI: scattering off heavy iodine is favored.

I Are different experiments consistent? The answer depends
significantly on the halo model assumptions.

I In the SHM and under specific assumptions for the DM halo, also
the inelastic scattering explanation of the DAMA signal is in
tension with the XENON100 bound.

I We will check this conclusion in a halo-independent way
(arXiv:1305.3575).
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Direct dark matter detection

I WIMP-nucleus collision:

I Minimum WIMP speed required to produce a recoil energy ER :

vm =

√
1

2mAER

(
mAER
µχA

+ δ

)

I For inelastic scattering, vm ∼ vesc ⇒ experiment probes the tails
of the DM velocity distribution, where halo substructures are
expected ⇒ important to develop halo-independent methods
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The differential event rate

I The differential event rate (event/keV/kg/day):

R(ER , t) =
ρχ

mχ

1
mA

∫
v>vm

d3v
dσA
dER

v fdet(v, t)

I For the standard spin-independent and spin-dependent
scattering:

R(ER , t) =
ρχσ0F 2(ER)

2mχµ
2
χA

η(vm , t)

where

η(vm , t) ≡
∫

v>vm
d3v

fdet(v, t)
v

fdet(v, t) = fsun(v + ve(t)) , ve ≈ 30 km/s
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Bound on the annual modulation amplitude
I Basic assumption: fsun(v) is constant on timescales of 1 yr, and

on the scale of the Sun-Earth distance ⇒ only time dependence
due to ve(t)

η(vm , t) =
∫

v>vm
d3v

fsun(v + ve(t))

v

I Using the fact that ve is small, one can expand the halo integral
in powers of ve

η(vm , t) = η0(vm)︸ ︷︷ ︸
unmodulated

+ Aη(vm)︸ ︷︷ ︸
annual mod. ampl.

cos 2π [t − t0(vm)] +O(v2
e )

I The modulation amplitude can be bounded in terms of the
unmodulated halo integral

∫ umax

umin

dvAη(v)(v − umin) <
ve

2

(
3−

u2
min

u2
max

) ∫ umax

umin

dv η0(v)

[umin, umax]: range in minimal velocities probed by the experiment
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Bound on the annual modulation amplitude

∫ umax

umin

dvAη(v)(v − umin) <
ve

2

(
3−

u2
min

u2
max

) ∫ umax

umin

dv η0(v)

I The bound depends on mχ, q(ER), and F 2(ER), but not on ρχ,
σp, and vesc.

I The l.h.s. and r.h.s. can refer to different experiments.

Applying the bound to data:

I Calculate the l.h.s. using modulation data from DAMA.

I Calculate the r.h.s. using an upper bound on η0 from the
observed number of events in XENON100.
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Bound on the annual modulation amplitude

I For inelastic scattering, ∆v = umax − umin is small.

I expansion parameter
is ve/∆v ⇒ can
become of order one.

I The expansion breaks
down for ve/∆v & 1
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I In regions where our expansion breaks down, we can use a
”trivial bound”: the amplitude of the annual modulation has to be
smaller than the unmodulated rate: Aη ≤ η0 (valid in the full
parameter space).
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Bound on the annual modulation amplitude

I “trivial bound": (Aη ≤ η0)

ve

2

(
3−

u2
min

u2
max

) ∫ umax

umin

dvAη(v)<
ve

2

(
3−

u2
min

u2
max

) ∫ umax

umin

dv η0(v)

I general bound:

∫ umax

umin

dvAη(v)(v − umin) <
ve

2

(
3−

u2
min

u2
max

) ∫ umax

umin

dv η0(v)
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Shape test

I Work in vm space to directly compare different experiments
⇒ translate physical observables in ER to vm.

Emin E2E1

umin

umax

Emed

umed

Enr

v m

vm =

√
1

2mAER

(
mAER
µχA

+ δ

)
I Non-unique relation

between vm and ER
⇒ complications for

inelastic scattering

I Numerically compute integrals such as:
∫ umax

umin
dvAη(v)(v − umin)

I The interval [umin, umed] corresponds to two energy regions:
[Emed, Emin] and [Emin, E2].

I if DM scatters inelastically, Ia =
∫ Emin

Emed
and Ib =

∫ E2
Emin

should give
the same value.
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Shape test

I Test the hypothesis that the signal is due to inelastic DM
scattering by requiring that Ia and Ib agree within experimental
errors.

I compute the difference weighted by the error as obtained from
DAMA data:

|Ia − Ib|√
σ2

a +σ2
b

I a strip in parameter
space is excluded at
> 3σ , just requiring a
spectral shape of the
signal consistent with
inelastic scattering.
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Numerical results
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I The bound is strongly violated, disfavoring an inelastic scattering
interpretation of the DAMA signal halo independently.
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Summary

I We generalized the method to compare different experiments
independent of assumptions on the DM distribution to the
case of inelastic scattering.

I Three different tests for the consistency of the inelastic
interpretation of the DAMA signal and its tension with
XENON100:

I the bound on the annual modulation amplitude based on an
expansion of the halo integral in ve.

I the trivial bound obtained by the requirement that Aη ≤ η0.
I the shape test based on the predicted shape of the signal.

I We confirmed in a halo-independent way that the inelastic
scattering explanation of the DAMA signal is strongly disfavored
by XENON100.

I The methods developed will provide a valuable consistency
check for an inelastic scattering interpretation of any future DM
signal.
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Additional slides



Upper bound on η0

I The expected number of events in a recoil energy interval [E1, E2]

Npred
[E1 ,E2] = C

∫ ∞
0

dERF 2(ER)G[E1 ,E2]
η0(vm(ER))

I Since η0 is a decreasing function, at a given vm, the minimum
number of events is obtained for η0(v) = η0(vm)Θ(vm − v) ,

Npred
[E1 ,E2] ≥ Cη0(vm)

∫ E+

E−
dERF 2(ER)G[E1 ,E2]

I We can obtain an upper bound on η0(vm) from the observed
number of events in XENON100
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